
PEtALS JBI Component User Guide

"WS-Notification Broker"
Service Engine

Author: Thierry DÉJEAN - Petals ESB Team
Contact: thierry.dejean@petalslink.com

Revision: 1

Last change: 20.07.2010

(CC) EBM WebSourcing - This work is licensed under the Creative
Commons Attribution-NonCommercial-ShareAlike License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

PEtALS Component User Guide

"WS-Notification Broker" Service Engine 2

PEtALS Component User Guide

Contents

1 Introduction 5

1.1 The WS-Notification OASIS Standards . 5

1.2 PEtALS ESB and EDA paradigm . 5

1.3 Limitations And Extensions . 6

1.3.1 Limitations . 6

1.3.2 Extensions . 6

2 Architecture Overview 7

2.1 UML Class Diagram . 7

2.2 The PEtALS WS-Notification libraries . 7

2.3 The PEtALS WS-Notification Broker Component . 8

2.3.1 CDK architecture part . 8

2.3.2 Classe Descriptions . 8

2.3.3 WS-Notification main mechanisms . 9

3 Configuration 11

3.1 Generic configuration parameters of JBI component . 11

3.2 Specific WS-Notification Broker configuration . 12

3.2.1 Specific fields of jbi.xml file . 12

3.2.2 Additional configuration elements . 12

4 Installation 13

4.1 PEtALS Entreprise Service Bus installation . 13

4.2 WS-Notification Broker service engine installation . 13

4.3 Others JBI components . 14

5 Ws-Notification Broker in action 17

5.1 «subcribe/unsubscribe» use-case . 17

5.1.1 scenario . 17

5.1.2 actors concerned . 17

5.1.3 how to run the use case . 17

5.1.4 expected results . 18

5.2 «registerPublisher/destroyRegistration» use-case . 19

5.2.1 scenario . 19

5.2.2 actors concerned . 19

5.2.3 how to run the use case . 19

5.2.4 expected results . 20

5.3 «Notify» use-case . 21

5.3.1 scenario . 21

5.3.2 actors concerned . 21

5.3.3 how to run the use case . 22

5.3.4 expected results . 22

"WS-Notification Broker" Service Engine 3

PEtALS Component User Guide

6 Externalize Ws-Notification Services 25
6.1 Prerequisites and Restrictions . 25

6.1.1 description . 25
6.1.2 additional required petals components . 25

6.2 Installation . 25
6.3 Request WS-Notification service from outside . 27

6.3.1 List of reachable WS-Notification services and resources 27
6.3.2 A Simple test : “subscribe/unsubscribe” from an external NotificationConsumer Actor . 28
6.3.3 And Next ? . 31

A Component wsdl file 33

B WS-Notification Broker “SupportedTopicsSet” file 37

C WS-Notification actor request payloads xml files 39
C.1 WsnConsumer «subscribe» request payload . 39
C.2 WsnProducer «registerPublisher» request payload . 39
C.3 WsnProducer «notify» request payload . 39

"WS-Notification Broker" Service Engine 4

PEtALS Component User Guide

PART

1
Introduction

The objective of this document is to explain how to install, configure and use the JBI component named
“petals-se-WsNotificationBroker“. It also provides a short view of its architecture and its goals as well as
some simple use-cases that illustrate main WS-Notification features.

The remainder of this document is organized as follows. The introduction describes the context and
gives some background on WS-Notification features respect to PEtALS Entreprise Service Bus. Section 2
provides an overview of WS-Notification Broker component. Next two sections - section 3 and section 4 -
describe how to install and configure the component. And the last section 5 provides some simple use-cases
that show WS-Notification component’s features in action

B This document will not deal with ”WS-Notification” paradigm in details and the reader
is supposed to be familiar with its concepts. If not, let’s have a look to OASIS Web Ser-
vices Notification TC website at : http://www.oasis-open.org/committees/
wsn/.

1.1 The WS-Notification OASIS Standards

The WS-Notification OASIS Standards consist of is a set of three specifications that describe mechanisms
and concepts associated to Eventing or Notification paradigm. These specification are :

• the Topic specification[8] : this specification defines the notion of topic which can be seen as a way
to label and classify events that producers can send. Shortly, any actor - event consumer - who wants
to received a specific event will previously subscribe on the topic which the event is associated to.

• the Base Notification specification[3] : this specification defines the main mechanism of “publish-
subscribe“ and describes what is exactly a ”Notification Consumer“ as well as a ”Notification Pro-
ducer“. it also provides some ”sub-mechanisms“ that can help to implement a more complex and
optimized EDA systems (such like ”pull point“ or pausable subscription mechanisms).

• the Brokered Notification specification[2] : this specification is an extension of the previous one and
mainly describes how to decouple Notification consumers to Notication Producer introducing a in-
termediary : a Notification Broker

No more details will be provided here concerning these specifications content and the reader who is
interested will find more details directly in mentioned papers.

1.2 PEtALS ESB and EDA paradigm

Even Driven Architecture paradigm has become more and more important in nowadays Service Architec-
tures and probably represents the next step after SOA one. Aware of this fact, it was clear that PEtALS
Entreprise Service Bus should provide features that answer to this need. In other words the PEtALSESB
container must provide a “publish-subscribe“ mechanism which is the base of EDA architecture. That is
why the technical choice have been to implement ”WS-Notification“ OASIS Standards through a JBI Ser-
vice Engine that make PEtALS container ”WS-Notification paradigm“ compliant. For practical, the petals-
se-WsNotificationBroker JBI service engine component implements a Notification Broker as describing in
Ws-BrokeredNotification OASIS specification[8].

"WS-Notification Broker" Service Engine 5

http://www.oasis-open.org/committees/wsn/
http://www.oasis-open.org/committees/wsn/

PEtALS Component User Guide

1.3 Limitations And Extensions

1.3.1 Limitations

Actually, only main Ws-BrokeredNotification operations have been implemented. In details these opera-
tions. Available operations are listed in component wsdl file A.
Moreover unless suggested in OASIS specifications[8, 3], Notification actors - notification producer, noti-
fication consumer and notification broker, have not been implementated as WS-Resources1 which means
that related operations are actually not supported. WS-Resource* OASIS specifications reference are pro-
vided at the end of this document[4, 5, 6, 7]

1.3.2 Extensions

This wsdl file defines an extra portType named SupportedTopicsSet. This portType provides some opera-
tion definitions that are not part of the WS-Notification OASIS specifications. Nevertheless, it seems that
such operations are essential to make Notification Broker usage easier during runtime.

In details, these operations are :

• The GetSupportedTopics(...) operation that let any actors to known the set of topics currently sup-
ported by the Notification broker.

• The AddNewSupportedTopic(...) operation that make any actors to update the set of topics currently
supported by the Notification broker during runtime. The new topic to add must be describe as topic
expression using ”Concrete“ or ”simple“ dialect2.

1see related website at www.oasis-open.org/committees/wsrf/
2see WSN OASIS specifications for more details [3, 8, 2]

"WS-Notification Broker" Service Engine 6

www.oasis-open.org/committees/wsrf/

PEtALS Component User Guide

PART

2
Architecture Overview

2.1 UML Class Diagram

A “synthetic“ - means non complete - UML class diagram of the WS-Notification Broker service engine
(the «org.ow2.petals» package) and its dependences with WS-Notification libraries (the package named
«com.ebmwebsourcing.wsstar.notification.service»):

Figure 2.1: UML class diagram

2.2 The PEtALS WS-Notification libraries

The PEtALS WS-Notification libraries are a set of java libraries that implement WS-Notification specifica-
tions content as well as WS-Addressing W3C specification[1] WS-Notification specifications depend on. In
details :

ws-addressing-model : this library provides Java classes that implement ws-addressing data types defined
in related specification. Java classes have been generated using JAXB tools are xml schema associated
to ws-addressing specification.

"WS-Notification Broker" Service Engine 7

PEtALS Component User Guide

ws-resource-model : this library provides Java classes that implement ws-resource data types defined in
related specifications. Java classes have been generated using JAXB tools are xml schema associated
to ws-resource specifications. It depends on « ws-addressing-model» library.

ws-notification-model : this library provides Java classes that implement ws-notification data types de-
fined in related specifications. Java classes have been generated using JAXB tools are xml schema
associated to ws-notification specifications. it depends on «ws-addressing-model» and «ws-resource-
model» libraries.

ws-notification-service : this library provides basic component that implement WS-Notification mecha-
nisms such as creation and management of consumers subscriptions resource, topics management
(associate and store links between subscriptions and known topics, registrations creation and man-
agement, ... and so on. In fact all mechanisms described in both «WS-BaseNotification» and «WS-
BrokeredNotification» are implemented in this library. And the BrokerNotificationService.java java
class, in WsNotificationBroker service engine source code simply realize - extends in OO paradigm
- the java abstract class BrokeredNotificationService.java, as shown in previous UML diagram class
(fig.2.1).

2.3 The PEtALS WS-Notification Broker Component

2.3.1 CDK architecture part

As explain previously, the PEtALS WS-Notification broker component business logic part - WS-Notification
mechanisms - is implemented through the «BrokeredNotificationService.java» class. Other part of the
component architecture - based on the Component Development Kit - will not by discuss in this document.
For more details about these concerns, please consult petalslink’s wiki at http://doc.petalslink.
com/ or contact the petals Team1

2.3.2 Classe Descriptions

JBIListener.java : implements «AbstractJBIListener» CDK’s class. Provides mechanisms that make the
component able to perform received JBI Messages. Determine which operation must be performed,
extract WS-Notification business logic payload and delegate treatments to WS-Notification business
logic stack implemented by the «BrokeredNotificationService» class. See PEtALS CDK’s documenta-
tion for more details

ServiceEngine.java : implements «AbstractServiceEngine» CDK’s class. Initialize WS-Notification busi-
ness Logic mechanisms. Provides common mechanisms of JBI Service Engine Components. See
PEtALS CDK’s documentation for more details

BrokeredNotificationService.java : implements WS-Notification business logic mechanisms that perform
WS-Notification standard operations «Subscribe», «Unsubscribe», «RegisterPublisher», «DestroyReg-
istration», «Notify», Based on WS-Notification libraries.

WsResourceEndpointMgr.java : provides mechanisms used to create and register new «WS-Resource»
endpoints - those associated to subscription and registration resources - on the PEtALS bus. If no
ServiceUnitManager is already linked to the component, this class must implements the CDK’s class
«ServiceEngineServiceUnitManager». Otherwise, if a ServiceUnitManager is already linked to the
component, one of its attribute must be an instance of «WsResourceEndpointMgr» (see petals-se-
WsnProducer-new source code).

EDAConstant.java : provides some common Constant widely used in WS-Notification context

1mail : petals[at]lists.ebmwebsourcing.com

"WS-Notification Broker" Service Engine 8

http://doc.petalslink.com/
http://doc.petalslink.com/

PEtALS Component User Guide

2.3.3 WS-Notification main mechanisms

Following sub-sections provide ”high level“ overviews - based on UML sequence diagrams - of five main
WS-Notification operations performing, respect to the WS-Notification Broker actor. Please be aware that
these may not follow rigorously the UML syntax and their aim is just to provide a global understand of how
the WS-Notification Broker actor.

• notify operation performing :

Figure 2.2: Notify UML sequence diagram

• subscribe operation performing :

Figure 2.3: Subscribe UML sequence diagram

• registerPublisher operation performing :

"WS-Notification Broker" Service Engine 9

PEtALS Component User Guide

Figure 2.4: RegisterPublisher UML sequence diagram

• unsubscribe operation performing :

Figure 2.5: Unsubscribe UML sequence diagram

• destroyRegistration operation performing :

Figure 2.6: DestroyRegistration UML sequence diagram

"WS-Notification Broker" Service Engine 10

PEtALS Component User Guide

PART

3
Configuration

3.1 Generic configuration parameters of JBI component

Parameter Description Default Required Scope

acceptor-pool-size

The size of the thread pool used to accept Mes-
sage Exchange from the NMR. Once a message is ac-
cepted, its processing is delegated to the processor
pool thread.

3 Yes Runtime

processor-pool-size

The default size of the thread pool used to process
Message Exchanges. Once a message is accepted, its
processing is delegated to one of the thread of this
pool.

10 Yes Runtime

processor-max-pool-size

The maximum size of the thread pool used to pro-
cess Message Exchanges. The difference between this
size and the processor-pool-size represents the dy-
namic threads that can be created and destroyed dur-
ing overhead processing time.

50 No Runtime

ignored-status

When the component receives an acknowledgement
message exchange, it can skip the processing of these
message according to the type of the acknowledg-
ment. If you decide to not ignore some acknowl-
edgement, the component listeners must take care of
them. Accepted values :

• DONE_AND_ERROR_IGNORED

• DONE_IGNORED

• ERROR_IGNORED

• NOTHING_IGNORED

DONE_AND_ERROR_IGNORED Yes Component

properties-file

Name of the file containing properties used as refer-
ence by other parameters. Parameters reference the
property name in the following pattern $myProperty-
Name. At runtime, the expression is replaced by the
value of the property. The value of this parameter is :

• an URL

• a file relative to the PEtALS installation path

• an empty value to stipulate a non-using file

- No Installation

external-listener-class-name

Qualified name of the class extending
AbstractExternalListener.

+ Only for BC components
- No Component

jbi-listener-class-name
Qualified name of the class extending
AbstractJBIListener.

- Yes Component

"WS-Notification Broker" Service Engine 11

PEtALS Component User Guide

Definition of CDK parameter scope :

• Component : The parameter has been defined during the development of the component. A user of
the component can not change its value.

• Installation : The parameter can be set during the installation of the component, by using the instal-
lation MBean (see JBI specifications for details about the installation sequence). If the parameter is
optional and has not been defined during the development of the component, it is not available at
installation time.

• Runtime : The paramater can be set during the installation of the component and during runtime.
The runtime configuration can be changed using the CDK custom MBean named “RuntimeConfigu-
ration“. If the parameter is optional and has not been defined during the development of the compo-
nent, it is not available at installation and runtime times.

3.2 Specific WS-Notification Broker configuration

3.2.1 Specific fields of jbi.xml file

The WS-Notification Broker component expect extra parameters in its jbi.xml configuration file. These pa-
rameters are listed, with their description, in the following table.

Parameter Description Default Required Scope

publishing-pattern

this parameter define the broker comportment re-
spect to publishing patterns, as describe in WS-
BrokeredNotification specification[2] (page 12/43).
Possible values are pattern’s names :

• simple

• brokered

• demand-based

demand-based Yes Component

3.2.2 Additional configuration elements

The other specific configuration element of the WS-Notification Broker component is its "supportedTopic-
Set.xml" configuration file which define its default set of supported - known - topics which notification
producers and notification consumers will be allowed to respectively register to and subscribe to.
A sample of such file is provided in the annexe part B. This document is an xml representation of a TopicSet
type object as defined in WS-Topics specification[8]. The to configure it is base on using a Environment
variable named SUPPORTED_TOPICS_SET whose value is the "supportedTopicSet.xml" file path.

+ If not set, then a default embedded "supportedTopicSet.xml" file wile be used.

"WS-Notification Broker" Service Engine 12

PEtALS Component User Guide

PART

4
Installation

4.1 PEtALS Entreprise Service Bus installation

Please refer to Official PEtALS Entreprise Service Bus Documentation on petalslink’s wiki at http://doc.
petalslink.com/. Some Pdf format documantation can be found at http://petals.ow2.org/
documentation.html

4.2 WS-Notification Broker service engine installation

Unless standart JBI component installation process, the component petals-se-WsNotificationBroker does
not require any service units to be configured. As soons as it is installed and deployed in PEtALS container,
relared endpoint are stored to the Services Registry.

The only rule is that it must be deployed and started before any other component that intends to use
petals ESB WS-Notification features. As any other PEtALS components, the petals-se-WsNotificationBroker
broker service engine can be installed and deployed by hand. To do that you simply have to copy and paste
the "petals-se-notification-X.X.zip" zip archive of the component in the sub-folder of your petals ESB plat-
form called «install/». Then, few seconds later, the embedded petals ESB autoloader mechanism will deploy
and start the component. This mechanism is enabled in the default configuration of the bus.

Figure 4.1: Petals ESB folder details

+ To remove "by hand" an installed PEtALS ESB component and/or its service assembly,
you simply have to remove the related archive from the "Installed/" folder

"WS-Notification Broker" Service Engine 13

http://doc.petalslink.com/
http://doc.petalslink.com/
http://petals.ow2.org/documentation.html
http://petals.ow2.org/documentation.html

PEtALS Component User Guide

Otherwise you can use PEtALS Entreprise Service Bus webconsole tools. See associated documentation
for more details1.

Figure 4.2: Webconsole Install Component administration page of Petals ESB

4.3 Others JBI components

In order to run use-cases described in next section 5 that illustrate, through the WsNotificationBroker ser-
vice engine, PEtALS WS-Notification features, some extra components need to installed. These components
are :

petals-se-WsnConsumer-new service engine :PEtALS service engine component that acts as a Notifica-
tion Consumer. As soon as its related service assembly is deployed and started, it sends a "Subscribe"
request to the Broker (the petas-se-WsNotificationBroker that must have been previously deployed).
A "Unsusbcribe" request is sent when its service assembly is stopped.

petals-se-WsnProducer-new service engine :PEtALS service engine component that acts as a Notifica-
tion Producer. As soon as its related service assembly is deployed and started, it sends a "Register-
Publisher" request to the Broker (the petas-se-WsNotificationBroker that must have been previously
deployed). A "DestroyRegistration" request is sent when its service assembly is stopped. When the
component is registred, it can receive a "Subscribe" request from the "Broker" as described in the
"demand-based" publishing pattern (see page 13/43 of the "WS-BrokeredNotification" specification).
Then, once its has been registred, it periodically checks if some Broker’s subscriptions exists on its own
supported topics and if so, it will send a notification message to it.

1Once again, related documentation can be found Petalslink’s wiki at http://doc.petalslink.com/ or in the section
«Documentation of PEtALS Entreprise Service Buswebsite at http://petals.ow2.org/documentation.html

"WS-Notification Broker" Service Engine 14

http://doc.petalslink.com/
http://petals.ow2.org/documentation.html

PEtALS Component User Guide

Figure 4.3: Webconsole component administration page of Petals ESB

And theirs associated configurations2 :

sa-se-WsnConsumer service engine : service assembly that provides WsnConsumer service engine stan-
dard configuration (endpoint, ...) as well as more specific configuration part such as the xml rep-
resentation3 - embedded file named subscribe-payload.xml - of the «Subscribe» request payload to
use.

sa-se-WsnProducer service engine :service assembly that provides WsnProducer service engine standard
configuration (endpoint, ...) as well as more specific configuration part such as the xml represen-
tation4 - embedded file named registerOnStart.xml - of the «RegisterPublisher» request payload to
use.

Figure 4.4: Webconsole service assemblies administration page of Petals ESB

Extra-components and their services assemblies can by installed by the same way as the WsNotifica-
tionBroker service engine. Only take care that the WsNotificationBroker service engine has been installed
and started first (see previous section.4.2)

2Service Assembly taht contains Service Units in JBI language
3the path of the xml file is set as paramter of the associated «jbi.xml» configuration file of the embedded service unit
4the path of the xml file is set as paramter of the associated «jbi.xml» configuration file of the embedded service unit

"WS-Notification Broker" Service Engine 15

PEtALS Component User Guide

Figure 4.5: Webconsole endpoints administration page of Petals ESB

"WS-Notification Broker" Service Engine 16

PEtALS Component User Guide

PART

5
Ws-Notification Broker in action

In this section some simple use-cases will be run using PEtALS webconsole interface and especially its «ad-
ministration» part that make user able to start or stop components and service assemblies. Of course this
is the only way to run use-cases but it is probably the most friendly one. Other way is to use «by hand»
method which means copy and past service assemblies archives in «install/» folder of PEtALS to install and
start them or remove existing one from «installed/» folder of PEtALS to stop and uninstall them.

5.1 «subcribe/unsubscribe» use-case

5.1.1 scenario

This use-case illustrate the upper parts of UML sequence diagrams presented in section 2.3.3 (fig.2.3 and
fig.2.5). A Notification consumer sends a «subscribe» request to the broker, then it sends a «unsubscribe»
request to the subscription resource newly created, according to subscription reference returned by the
broker.

5.1.2 actors concerned

The WS-Notification actors concerned by this use-case are :

• Notification Consumer which sends a «subscribe» request the broker and sends later a «unsubscribe»
request to the previously created subscription resource whose reference have been returned by the
broker

• Notification Broker which perform the request and return the reference of the newly created sub-
scription resource

• SubscriptionManager resource - the subscription created by the Broker - which will perform the «un-
subscribe» request

5.1.3 how to run the use case

Using the PEtALS webconsole administration interface, services assemblies page, start the «sa-se-wsnconsumer»
service assembly to make the consumer send a «subscribe»request to the broker, and stop it to make it send
a «unsubscribe» request to subscription resource newly created

"WS-Notification Broker" Service Engine 17

PEtALS Component User Guide

Figure 5.1: sa-se-wsnconsumer service assembly has been started

5.1.4 expected results

In the PEtALS webconsole administration interface, endpoints page, a new endpoint must have been added
after the «sa-se-wsnconsumer» started1

Figure 5.2: New «Subscription resource» endpoint registered on endpoints administration page

And this endpoint will be removed as soon as the «sa-se-wsnconsumer» is stopped and no longer appear
in the PEtALS webconsole administration interface, endpoints page.

1 Notification resources endpoint name format is : “@res=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx”

"WS-Notification Broker" Service Engine 18

PEtALS Component User Guide

Figure 5.3: The new «Subscription resource» endpoint is no longer registered

5.2 «registerPublisher/destroyRegistration» use-case

5.2.1 scenario

This use-case illustrate the upper parts of UML sequence diagrams presented in section 2.3.3 (fig.2.4 and
fig.2.6). A Notification producer sends a «registerPublisher» request to the broker, and starts checking, each
30 seconds, if some consumers - keep in mind that a broker is also a consumer ;) - have subscribes to its
topics. Then it sends a «destroyRegistration» request to the registration resource newly created, according
to publisher’s registration reference returned by the broker.

5.2.2 actors concerned

The WS-Notification actors concerned by this use-case are :

• Notification Producer which sends a «registerPublisher» request the broker and sends later a «de-
stroyRegistration» request to the previously created publisher’s registration resource whose reference
have been returned by the broker

• Notification Broker which perform the request and return the reference of the newly created sub-
scription resource

• PublisherRegistrationManager resource - the publisher’s registration created by the Broker - which
will perform the «destroyRegistration» request

5.2.3 how to run the use case

Using the PEtALS webconsole administration interface, services assemblies page, start the «sa-se-wsnproducer»
service assembly to make the producer send a «registerPublisher» request to the broker, and stop it to make
it send a «destroyRegistration» request to registration resource newly created

"WS-Notification Broker" Service Engine 19

PEtALS Component User Guide

Figure 5.4: sa-se-wsnproducer service assembly has been started

5.2.4 expected results

In the PEtALS webconsole administration interface, endpoints page, a new endpoint must have been added
after the «sa-se-wsnproducer» started.

Figure 5.5: New «Subscription resource» endpoint registered on endpoints administration page

And this endpoint will be removed as soon as the «sa-se-wsnproducer» is stopped and no longer appear
in the PEtALS webconsole administration interface, endpoints page.

"WS-Notification Broker" Service Engine 20

PEtALS Component User Guide

Figure 5.6: The new «Registration resource» endpoint is no longer registered

5.3 «Notify» use-case

5.3.1 scenario

This use-case illustrate the UML sequence diagrams presented in section 2.3.3 (fig.2.2). First, a Notification
producer sends a «registerPublisher» request to the broker and start checking each 30s if some consumers
have subscribed to its topics - keep in mind that a broker is also a consumer ;). Then a Notification consumer
sends a «subscribe» request to the broker which will find the existing publisher’s registration and will sends,
a s a consequence, a «subscribe» request to the Notification producer (fully described by UML diagram
fig.2.3). From now, each 30 seconds, the producer will found broker subscription and sends it a «notify»
request. This request will then forwarded to the Notification consumer.

5.3.2 actors concerned

The WS-Notification actors concerned by this use-case are :

• Notification Producer which sends a «registerPublisher» request the broker and sends later «notify»
requests to the broker, as long as the broker does not unsubscribe to subscription created by the
producer.

• Notification Broker which perform the requests and return the reference of newly created subscrip-
tion and registration resources. It will also receive from the producer and sends to the consumer,
some «notify» requests

• PublisherRegistrationManager resource - the publisher’s registration created by the Broker - which
will perform the «destroyRegistration» request

• Notification Consumer which sends a «subscribe» request the broker and perform «notify» requests
sended by the broker.

• SubscriptionManager resources - subscriptions created by the Broker and by the producer (as de-
scribe in fig.2.3).

"WS-Notification Broker" Service Engine 21

PEtALS Component User Guide

5.3.3 how to run the use case

Using the PEtALS webconsole administration interface, services assemblies page, start both «sa-se-wsnproducer»
and «sa-se-wsnconsumer» service assemblies. As soon as the Notification producer will find the broker sub-
scription, it will start sending it a «notify» request. Simply stop the service assemblies - in fact just stopping
one is enough - to make the producer stop sending «notify» request

Figure 5.7: all services assemblies - both producer and consumer one - are startted

5.3.4 expected results

+ In order to see explicit notification message in the console logs, PEtALS ESB must
have been configured to display logs for component level. In other words, the
following line must be uncommented in «loggers.properties» configuration file :
“logger.Petals.Container.Components.level DEBUG”

Results are only viewable in the console where the PEtALS Entreprise Service Bus container has been
launched. In log message, you should see «notify» requests send by the «petals-se-WsnProducer» compo-
nent, received then sends by the «petals-se-WsNotificationBroker» component and finally received by the
«petals-se-WsnConsumer» component.

[. . .]

[Petals . Container . Components . petals−se−WsnProducer−new]−INFO 2010−08−02 18 :26:35 ,308 Generate n o t i f i c a t i o n
on e x i s t i n g Broker subscription . . .
[Petals . Container . Components . petals−se−WsnProducer−new]−FINE 2010−08−02 18 :26:35 ,309

============ − DEBUG − Subscription found : 862a9ad0−bf55−4395−a134−b670ada845fd
[Petals . Container . Components . petals−se−WsnProducer−new]−FINE 2010−08−02 18 :26:35 ,340

==========
[. . .]

[Petals . Container . Components . petals−se−WsNotificationBroker]−FINE 2010−08−02 18 :26:35 ,350
exchange to process i n t e r n a l l y received
[Petals . Container . Components . petals−se−WsNotificationBroker]−FINE 2010−08−02 18 :26:35 ,351
I am the " n o t i f i c a t i o n broker " and i have received a n o t i f i c a t i o n from a r e g i s t r e d n o t i f i c a t i o n producer !
[Petals . Container . Components . petals−se−WsNotificationBroker]−FINE 2010−08−02 18 :26:35 ,351
I must forward t h i s n o t i f i c a t i o n to a l l consumer that have subscribed to i t

[. . .]

[Petals . Container . Components . petals−se−WsnConsumer−new]−FINE 2010−08−02 18 :26:35 ,399
Accepting a JBI message with Id : petals:uid:08EA730453C9689DBC2291541372637414
[Petals . Container . Components . petals−se−WsnConsumer−new]−FINEST 2010−08−02 18 :26:35 ,400
Process an exchange as PROVIDER with id : petals:uid:08EA730453C9689DBC2291541372637414

"WS-Notification Broker" Service Engine 22

PEtALS Component User Guide

[Petals . Container . Components . petals−se−WsnConsumer−new]−FINE 2010−08−02 18 :26:35 ,400
Process an exchange managed d i r e c t l y by the component
[Petals . Container . Components . petals−se−WsnConsumer−new]−FINE 2010−08−02 18 :26:35 ,404

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[ Petals . Container . Components . petals−se−WsnConsumer−new]−FINE 2010−08−02 18 :26:35 ,404

Noti f icat ion Message received on "onJBIMessage" method . Nothing to do
[ Petals . Container . Components . petals−se−WsnConsumer−new]−FINE 2010−08−02 18 :26:35 ,404

exchange to process i n t e r n a l l y received
[ Petals . Container . Components . petals−se−WsnConsumer−new]−INFO 2010−08−02 18 :26:35 ,436

hey ! I am the " Noti f icat ion consumer" component and i have received a n o t i f i c a t i o n from the Broker !
[ Petals . Container . Components . petals−se−WsnConsumer−new]−INFO 2010−08−02 18 :26:35 ,458

NotificationMessageHolder content received :
<?xml version=" 1.0 " encoding="UTF−8" ?>

<NotifyContent xmlns:wsnt=" h t t p : // docs . oasis−open . org /wsn/b−2"> t h i s The content message
of the pseudo n o t i f i c a t i o n sent by the WsnProducer ! ! !

</ NotifyContent>

[ . . . ]

"WS-Notification Broker" Service Engine 23



PEtALS Component User Guide

"WS-Notification Broker" Service Engine 24



PEtALS Component User Guide

PART

6
Externalize Ws-Notification Services

This section will explain how to externalize - mains expose outside the PEtALS Entreprise Service Bus - ser-
vices provided by the “petals-se-WsNotificationBroker” service engine component and then make a PEtALS
ESB container act as a “Ws-Notification” actor respect to other external actors.

6.1 Prerequisites and Restrictions

6.1.1 description

This solution is based on the PEtALS binding component “petals-bc-soap” - more exactly a modified version
of it - and it supposes that all requests are sent using “SOAP over http” transport protocol.

6.1.2 additional required petals components

Components1 required to externalize “WS-Notification Broker” services are :

• petals-bc-soap-notif : a modified version2 of “petals-bc-soap” PEtALS binding component commonly
used to externalize an internal JBI Service and make it reachable from outside using “SOAP over
HTTP” transport protocol3.

• sa-soap-se-WsNotificationBroker : the service assembly used to configure the resource “petals-bc-
soap-notif” PEtALS binding component in order to make “WS-Notification Broker” services available
outside the Bus.

• External SOAP client (Optional) : a any SOAP4 client able to create and send SOAP message to a given
URL.

6.2 Installation

These additional PEtALS components - and not the external SOAP client of course - can be installed and
started, using the PEtALS webconsole, as described in previous sections of this document.

Once installed the “petals-bc-soap-notif” component should be listed in the webconsole component
Administration page (fig. - 6.1)

1these extra components are actually only located in the “sandbox/tdejean” folder on the PEtALS SVN repository and also - link
- on the forge of the European research project named “Synergy”

2It automatically externalizes any WS-Resource created and registered, at runtime, in PEtALS bus as a result of a “Subscribe” or
“RegisterPublisher” request

3For more details, see related documentation on petalslink wiki : http://doc.petalslink.com/
4SOAPUI is a good choice even if it is not the only one. Its web site : http://www.soapui.org

"WS-Notification Broker" Service Engine 25

http://doc.petalslink.com/
http://www.soapui.org


PEtALS Component User Guide

Figure 6.1: BC-SOAP-Notif installation on webconsole component administration page

As well as the “sa-soap-se-WsNotificationBroker” service assembly that should appear in the list of the
managed service assembly page(fig - 6.2)

Figure 6.2: BC-SOAP-Notif installation on webconsole component administration page

To validate the installation process, the web homepage provided by the “petals-bc-soap-notif” compo-
nent (fig. - 6.3) must be available when you request it5

5common url should be : http://localhost:8085/. Otherwise check the bc-soap-notif jbi.xml file to determinate the configured
port number

"WS-Notification Broker" Service Engine 26



PEtALS Component User Guide

Figure 6.3: The web homepage provided by the bc-soap component when started

6.3 Request WS-Notification service from outside

6.3.1 List of reachable WS-Notification services and resources

Available services list

From the bc-soap component web homepage you can show which services are available and can be re-
quested from any Soap client, according to their associated wsdl file description. Currently two services
shoul be listed - and so reachable - which are “SupportedTopicsService” service and the “NotificationBro-
kerService” service (fig. 6.4).

Figure 6.4: The bc-soap “available service” web page

• The “SupportedTopicsService” service provides the supported Topics set currently supported by PEtALS
ESB - through its petals-se-WsNotificationBroker service engine component - and which a Notifica-

"WS-Notification Broker" Service Engine 27



PEtALS Component User Guide

tionConsumer can subscribe to6.

• The “NotificationBrokerService” service provides the common Ws-Notification operation provided
by a Notification Broker : Subscribe, Unsubscribe, Notify, RegisterPublisher, DestroyRegistration, ...
See related OASIS Specifications for more details

Subscription/registration WS-Notification resources list

And A second page, also available from the bc-soap component web homepage show which Subscrip-
tion/Registration are currently “managed” by the PEtALS ESB and can then be removed by sending to them
appropriate requests (Unsubscrabe/DestroyRegistration)

Figure 6.5: The bc-soap “available ws-notification resources” web page

6.3.2 A Simple test : “subscribe/unsubscribe” from an external NotificationConsumer Actor

Using the SOAPUI client software, a “subscribe” request the an “Unsubscribe” request are sent to the PEtALS
ESB using the “BC-SOAP” exposed url address. The creation and the destruction of the Subscription re-
source can be check using both the bc-soap web homepage (external view of PEtALS services) and the
PEtALSwebconsole (internal view of PEtALS services).

Create and send “Subscribe” request from SOAPUI

Create the payload and send the “subscribe” request according the related wsdl description and the cur-
rently supported topics (fig. 6.6)

6Even if the “getSupportedTopics” does not expect any specific payload content, you must add an empty xml node “<empty/>”
in the body part of the sent SOAP message

"WS-Notification Broker" Service Engine 28



PEtALS Component User Guide

Figure 6.6: Performing a “Subscribe” request from SOAPUI software (soap client)

If no error have been made ins the request a simple “UnsubscribeResponse” payload message must be
returned (fig. 6.7)

Figure 6.7: Returned “Subscribe” response from PEtALS ESB (through bc-soap component)

Check the creation of the associated WS-Resource

Once the “subscribe” has been performed and the associated response returned the subscription resource -
its associated endpoint - is now registered in the PEtALS ESB registry and automatically externalize through
the “petals-bc-soap” component as a webservice whose interface is the one defined as the Subscription-
Manager Interface7

A subscription notification resource is now listed in the bc-soap “available resource” webpage (fig. 6.8)

7See p.31 of OASIS specification[3]

"WS-Notification Broker" Service Engine 29



PEtALS Component User Guide

Figure 6.8: The subscription “ws-resource” is now listed - and reachable - in the bc-soap “available resource”
page

And a new internal endpoint appears in the known endpoint list, in the related PEtALS ESB webconsole
page (fig. 6.9)

Figure 6.9: And the subscription “ws-resource” is also listed in the webconsole endpoint section administration
page

Remove the subscription sending “unsubscribe” request

Then to end this use case, an “unsubscribe” request is now sent the Subscription “WS-Resource” using the
soap address previously returned in the “subscribe” response payload.

"WS-Notification Broker" Service Engine 30



PEtALS Component User Guide

Figure 6.10: Performing a “Unsubscribe” request from SOAPUI software (soap client)

And expected response to the request must be a “UnsubcribeResponse” payload as describe in the OA-
SIS specification[3]

Figure 6.11: Returned “Unsubscribe” response from PEtALS ESB (through bc-soap component)

6.3.3 And Next ?

Well that ups to you. If you have well understood hwo does it work, you can now built your own use cases,
using your own SOAP client. Have fun !

"WS-Notification Broker" Service Engine 31



PEtALS Component User Guide

"WS-Notification Broker" Service Engine 32



PEtALS Component User Guide

PART

A
Component wsdl file

<?xml version=" 1.0 " encoding="UTF−8" ?>
< w s d l : d e f i n i t i o n s xmlns:soap=" h t t p : //schemas . xmlsoap . org /wsdl/soap/ "

xmlns:tns=" h t t p : // petals . ow2 . org /components/ petals−se−WsNotificationBroker "
xmlns:wsdl=" h t t p : //schemas . xmlsoap . org /wsdl/ "
xmlns:xsd=" h t t p : //www.w3. org /2001/XMLSchema"
xmlns:wsn−bw=" h t t p : // docs . oasis−open . org /wsn/bw−2"
xmlns:wsn−brw=" h t t p : // docs . oasis−open . org /wsn/brw−2"
xmlns:wsn−br=" h t t p : // docs . oasis−open . org /wsn/br−2"
xmlns:wstop=" h t t p : // docs . oasis−open . org /wsn/ t−1"
xmlns:wsn−b=" h t t p : // docs . oasis−open . org /wsn/b−2"
name="WS−BrokeredNotification "
targetNamespace=" h t t p : // petals . ow2 . org /components/ petals−se−WsNotificationBroker ">

< !−− ================================================== −−>
< !−− ================== imports ======================= −−>
< !−− ================================================== −−>

<wsdl:import location=" h t t p : // docs . oasis−open . org /wsn/brw−2.wsdl"
namespace=" h t t p : // docs . oasis−open . org /wsn/brw−2" />

<wsdl:import location=" h t t p : // docs . oasis−open . org /wsn/bw−2.wsdl"
namespace=" h t t p : // docs . oasis−open . org /wsn/bw−2" />

< !−− ================================================== −−>
< !−− ========= Message part d e f i n i t i o n ================ −−>
< !−− ================================================== −−>

<wsdl:message name="EmptyMessage" />

<wsdl:message name="GetSupportedTopicsResponseMessage">
<wsdl:part name="body" element=" wstop:TopicSet " />

</wsdl:message>

<wsdl:message name="AddNewSupportedTopicMessage">
<wsdl:part name="body" element="wsn−b:TopicExpression " />

</wsdl:message>

< !−− =============================================== −−>
< !−− ========= PortType d e f i n i t i o n ================ −−>
< !−− =============================================== −−>

<wsdl:portType name=" SupportedTopicsSet ">
<wsdl:documentation>

This port type defines a Web service that provides
information about Topics currently supported by the Broker .
Also allow to add new supported topic during runtime (EXPERIMENTAL)

</wsdl:documentation>

<wsdl:operation name="GetSupportedTopics">
<wsdl:input message="tns:EmptyMessage" />
<wsdl:output message="tns:GetSupportedTopicsResponseMessage" />

</ wsdl:operation>

<wsdl:operation name="AddNewSupportedTopic">
<wsdl:input message="tns:AddNewSupportedTopicMessage" />

</ wsdl:operation>
</ wsdl:portType>

< !−− ============================================= −−>
< !−− ========== Binding d e f i n i t i o n =============== −−>
< !−− ============================================= −−>

< !−− Notif icationBroker binding d e f i n i t i o n −−>
<wsdl:binding name=" NotificationBrokerBinding " type="wsn−brw:NotificationBroker ">

<soap:binding s t y l e ="document" transport=" h t t p : //schemas . xmlsoap . org /soap/ http " />

"WS-Notification Broker" Service Engine 33



PEtALS Component User Guide

<wsdl:operation name=" Notify ">
<soap:operation

soapAction=" h t t p : // docs . oasis−open . org /wsn/bw−2/NotificationConsumer / Notify " />
<wsdl:input>

<soap:body use=" l i t e r a l " />
</ wsdl:input>

</ wsdl:operation>
<wsdl:operation name=" Subscribe ">

<soap:operation
soapAction=" h t t p : // docs . oasis−open . org /wsn/bw−2/NotificationProducer / SubscribeRequest " />

<wsdl:input>
<soap:body use=" l i t e r a l " />

</ wsdl:input>
<wsdl:output>

<soap:body use=" l i t e r a l " />
</ wsdl:output>
< w s d l : f a u l t name="ResourceUnknownFault">

< s o a p : f a u l t use=" l i t e r a l " name="ResourceUnknownFault" />
</ w s d l : f a u l t >
< w s d l : f a u l t name=" I n v a l i d F i l t e r F a u l t ">

< s o a p : f a u l t use=" l i t e r a l " name=" I n v a l i d F i l t e r F a u l t " />
</ w s d l : f a u l t >
< w s d l : f a u l t name="TopicExpressionDialectUnknownFault">

< s o a p : f a u l t use=" l i t e r a l " name="TopicExpressionDialectUnknownFault" />
</ w s d l : f a u l t >
< w s d l : f a u l t name=" InvalidTopicExpressionFault ">

< s o a p : f a u l t use=" l i t e r a l " name=" InvalidTopicExpressionFault " />
</ w s d l : f a u l t >
< w s d l : f a u l t name="TopicNotSupportedFault">

< s o a p : f a u l t use=" l i t e r a l " name="TopicNotSupportedFault" />
</ w s d l : f a u l t >
< w s d l : f a u l t name=" InvalidProducerPropertiesExpressionFault ">

< s o a p : f a u l t use=" l i t e r a l " name=" InvalidProducerPropertiesExpressionFault " />
</ w s d l : f a u l t >
< w s d l : f a u l t name=" InvalidMessageContentExpressionFault ">

< s o a p : f a u l t use=" l i t e r a l " name=" InvalidMessageContentExpressionFault " />
</ w s d l : f a u l t >
< w s d l : f a u l t name=" UnacceptableInitialTerminationTimeFault ">

< s o a p : f a u l t use=" l i t e r a l " name=" UnacceptableInitialTerminationTimeFault " />
</ w s d l : f a u l t >
< w s d l : f a u l t name=" UnrecognizedPolicyRequestFault ">

< s o a p : f a u l t use=" l i t e r a l " name=" UnrecognizedPolicyRequestFault " />
</ w s d l : f a u l t >
< w s d l : f a u l t name=" UnsupportedPolicyRequestFault ">

< s o a p : f a u l t use=" l i t e r a l " name=" UnsupportedPolicyRequestFault " />
</ w s d l : f a u l t >
< w s d l : f a u l t name="NotifyMessageNotSupportedFault">

< s o a p : f a u l t use=" l i t e r a l " name="NotifyMessageNotSupportedFault" />
</ w s d l : f a u l t >
< w s d l : f a u l t name=" SubscribeCreationFailedFault ">

< s o a p : f a u l t use=" l i t e r a l " name=" SubscribeCreationFailedFault " />
</ w s d l : f a u l t >

</ wsdl:operation>
<wsdl:operation name="GetCurrentMessage">

<soap:operation
soapAction=" h t t p : // docs . oasis−open . org /wsn/bw−2/NotificationProducer /GetCurrentMessageRequest" />

<wsdl:input>
<soap:body use=" l i t e r a l " />

</ wsdl:input>
<wsdl:output>

<soap:body use=" l i t e r a l " />
</ wsdl:output>
< w s d l : f a u l t name="ResourceUnknownFault">

< s o a p : f a u l t use=" l i t e r a l " name="ResourceUnknownFault" />
</ w s d l : f a u l t >
< w s d l : f a u l t name="TopicExpressionDialectUnknownFault">

< s o a p : f a u l t use=" l i t e r a l " name="TopicExpressionDialectUnknownFault" />
</ w s d l : f a u l t >
< w s d l : f a u l t name=" InvalidTopicExpressionFault ">

< s o a p : f a u l t use=" l i t e r a l " name=" InvalidTopicExpressionFault " />
</ w s d l : f a u l t >
< w s d l : f a u l t name="TopicNotSupportedFault">

< s o a p : f a u l t use=" l i t e r a l " name="TopicNotSupportedFault" />

"WS-Notification Broker" Service Engine 34



PEtALS Component User Guide

</ w s d l : f a u l t >
< w s d l : f a u l t name="NoCurrentMessageOnTopicFault">

< s o a p : f a u l t use=" l i t e r a l " name="NoCurrentMessageOnTopicFault" />
</ w s d l : f a u l t >
< w s d l : f a u l t name=" MultipleTopicsSpecifiedFault ">

< s o a p : f a u l t use=" l i t e r a l " name=" MultipleTopicsSpecifiedFault " />
</ w s d l : f a u l t >

</ wsdl:operation>
<wsdl:operation name=" RegisterPublisher ">

<soap:operation
soapAction=" h t t p : // docs . oasis−open . org /wsn/brw−2/RegisterPublisher / RegisterPublisherRequest " />

<wsdl:input>
<soap:body use=" l i t e r a l " />

</ wsdl:input>
<wsdl:output>

<soap:body use=" l i t e r a l " />
</ wsdl:output>
< w s d l : f a u l t name="ResourceUnknownFault">

< s o a p : f a u l t use=" l i t e r a l " name="ResourceUnknownFault" />
</ w s d l : f a u l t >
< w s d l : f a u l t name=" InvalidTopicExpressionFault ">

< s o a p : f a u l t use=" l i t e r a l " name=" InvalidTopicExpressionFault " />
</ w s d l : f a u l t >
< w s d l : f a u l t name="TopicNotSupportedFault">

< s o a p : f a u l t use=" l i t e r a l " name="TopicNotSupportedFault" />
</ w s d l : f a u l t >
< w s d l : f a u l t name=" PublisherRegistrationRejectedFault ">

< s o a p : f a u l t use=" l i t e r a l " name=" PublisherRegistrationRejectedFault " />
</ w s d l : f a u l t >
< w s d l : f a u l t name=" PublisherRegistrat ionFailedFault ">

< s o a p : f a u l t use=" l i t e r a l " name=" PublisherRegistrat ionFailedFault " />
</ w s d l : f a u l t >
< w s d l : f a u l t name=" UnacceptableInitialTerminationTimeFault ">

< s o a p : f a u l t use=" l i t e r a l " name=" UnacceptableInitialTerminationTimeFault " />
</ w s d l : f a u l t >

</ wsdl:operation>
</ wsdl:binding>

< !−− SupportedTopicsSet portType S e r v i c e binding d e f i n i t i o n −−>
<wsdl:binding name=" SupportedTopicsSetBinding " type=" tns:SupportedTopicsSet ">

<soap:binding s t y l e ="document" transport=" h t t p : //schemas . xmlsoap . org /soap/ http " />
<wsdl:operation name="GetSupportedTopics">

<soap:operation
soapAction=" h t t p : //www. ebmwebsourcing .com/WS−BrokeredNotification /GetSupportedTopics" />

<wsdl:input>
<soap:body use=" l i t e r a l " />

</ wsdl:input>
<wsdl:output>

<soap:body use=" l i t e r a l " />
</ wsdl:output>

</ wsdl:operation>
<wsdl:operation name="AddNewSupportedTopic">

<soap:operation
soapAction=" h t t p : //www. ebmwebsourcing .com/WS−BrokeredNotification /AddNewSupportedTopic" />

<wsdl:input>
<soap:body use=" l i t e r a l " />

</ wsdl:input>
</ wsdl:operation>

</ wsdl:binding>

< !−− ============================================= −−>
< !−− =========== S e r v i c e part d e f i n i t i o n ========= −−>
< !−− ============================================= −−>

<wsdl :service name=" Notif icationBrokerService ">
<wsdl:port name=" NotificationBrokerServiceEndpoint " binding=" tns:Notif icationBrokerBinding ">

<soap:address location=" NotificationBrokerServiceEndpoint " />
</ wsdl:port>

</ wsdl :service>

<wsdl :service name=" SupportedTopicsService ">
<wsdl:port name=" SupportedTopicsServiceEndpoint " binding=" tns:SupportedTopicsSetBinding ">

<soap:address location=" SupportedTopicsServiceEndpoint " />

"WS-Notification Broker" Service Engine 35



PEtALS Component User Guide

</ wsdl:port>
</ wsdl :service>

</ w s d l : d e f i n i t i o n s >

"WS-Notification Broker" Service Engine 36



PEtALS Component User Guide

PART

B

WS-Notification Broker
“SupportedTopicsSet” file

<?xml version=" 1.0 " encoding="UTF−8" ?>
<wstop:TopicSet xmlns:wstop=" h t t p : // docs . oasis−open . org /wsn/ t−1"

xmlns:internalns=" h t t p : // petals . ow2 . org /topicNamespace/sample/ Internal "
xmlns:externalns=" h t t p : // petals . ow2 . org /topicNamespace/sample/ External "
xmlns:petals=" h t t p : // petals . ow2 . org / topic "
xmlns:genesis=" h t t p : // petals . ow2 . org /topicNamespace/GenesisDemonstrator"
xmlns:xsi=" h t t p : //www.w3. org /2001/XMLSchema−instance ">
<internalns:rootTopic1 wstop:topic=" true ">

<internalns:childTopic1 wstop:topic=" true " />
<internalns:childTopic2>

<internalns:grandChildTopic21 wstop:topic=" true " />
</ internalns:childTopic2>
<internalns:childTopic3 wstop:topic=" true " />

</ internalns:rootTopic1>
<externalns:rootTopic2>

<externalns:childTopic1>
<externalns:grandChildTopic11 wstop:topic=" true ">

<externalns:grandGrandChildTopic111 wstop:topic=" true " />
<externalns:grandGrandChildTopic112 wstop:topic=" true " />

</ externalns:grandChildTopic11>
</ externalns:childTopic1>
<externalns:childTopic2 wstop:topic=" true ">

<externalns:grandChildTopic21 wstop:topic=" true " />
<externalns:grandChildTopic22 wstop:topic=" true " />

</ externalns:childTopic2>
</ externalns:rootTopic2>
<genesis:rootTopic>

<genesis:childTopic1>
<genesis:grandChildTopic1 wstop:topic=" true ">

<genesis:grandGrandChildTopic1 wstop:topic=" true " />
<genesis:grandGrandChildTopic2 wstop:topic=" true " />

</ genesis:grandChildTopic1>
</ genesis:childTopic1>
<genesis:childTopic2 wstop:topic=" true ">

<genesis:grandChildTopic1 wstop:topic=" true " />
<genesis:grandChildTopic2 wstop:topic=" true " />

</ genesis:childTopic2>
</ genesis:rootTopic>
<petals:component>

<petals :cdk>
<petals:producer>

< p e t a l s : i n wstop:topic=" true " />
< p e ta l s : o u t wstop:topic=" true " />
< p e t a l s : s t a t u s wstop:topic=" true " />
< p e t a l s : f a u l t wstop:topic=" true " />

</ petals:producer>
</ petals :cdk>
<petals:bc−soap>

< p e t a l s : s o a p f a u l t wstop:topic=" true " />
</ petals:bc−soap>
<petals:bc−mail>

<petals :smtpfault wstop:topic=" true " />
</ petals:bc−mail>

</petals:component>
< p e t a l s : k e r n e l >

< p e t a l s : r o u t a g e f a u l t wstop:topic=" true " />
< p e t a l s : t r a n s p o r t e r f a u l t wstop:topic=" true " />

</ p e t a l s : k e r n e l >
</ wstop:TopicSet>

"WS-Notification Broker" Service Engine 37



PEtALS Component User Guide

"WS-Notification Broker" Service Engine 38



PEtALS Component User Guide

PART

C

WS-Notification actor request payloads
xml files

C.1 WsnConsumer «subscribe» request payload

<?xml version=" 1.0 " encoding="UTF−8" ?>
<wsnt:Subscribe

xmlns:wsnt=" h t t p : // docs . oasis−open . org /wsn/b−2"
xmlns:wsa=" h t t p : //www.w3. org /2005/08/ addressing "
targetnamespace =" h t t p : // docs . oasis−open . org /wsn/b−2">
<wsnt:ConsumerReference>

<wsa:Address>
h t t p : //www. ebmwebsourcing .com/WS−BaseNotification::SeSampleWsnConsumerService@SeSampleWsnConsumerServiceEndpoint

</ wsa:Address>
</wsnt:ConsumerReference>
< w s n t : F i l t e r >

<wsnt:TopicExpression Dialect=" h t t p : // docs . oasis−open . org /wsn/ t−1/TopicExpression / Ful l "
xmlns:internalns=" h t t p : // petals . ow2 . org /topicNamespace/sample/ Internal ">

internalns:rootTopic1 / childTopic2 / / * [ @wstop:topic= ’ true ’ ]
</ wsnt:TopicExpression>

</ w s n t : F i l t e r >
<wsnt:InitialTerminationTime>PT1H</ wsnt:InitialTerminationTime>
<wsnt:SubscriptionPolicy />

</ wsnt:Subscribe>

C.2 WsnProducer «registerPublisher» request payload

<?xml version=" 1.0 " encoding="UTF−8" ?>
<wsn−br:RegisterPublisher

xmlns:wsn−br=" h t t p : // docs . oasis−open . org /wsn/br−2"
xmlns:wsa=" h t t p : //www.w3. org /2005/08/ addressing "
targetnamespace =" h t t p : // docs . oasis−open . org /wsn/br−2">
<wsn−br:PublisherReference>

<wsa:Address>
h t t p : //www. ebmwebsourcing .com/WS−BaseNotification::SeSampleWsnProducerService@SeSampleWsnProducerServiceEndpoint

</ wsa:Address>
</wsn−br:PublisherReference>
<wsn−br:Topic Dialect=" h t t p : // docs . oasis−open . org /wsn/ t−1/TopicExpression / Ful l "

xmlns:internalns=" h t t p : // petals . ow2 . org /topicNamespace/sample/ Internal ">
internalns:rootTopic1 / / * [ @wstop:topic= ’ true ’ ]

</wsn−br:Topic>
<wsn−br:Demand> f a l s e </wsn−br:Demand>
<wsn−br:InitialTerminationTime>2009−12−25T00:00:00 .00000Z</wsn−br:InitialTerminationTime>

</wsn−br:RegisterPublisher>

C.3 WsnProducer «notify» request payload

<?xml version=" 1.0 " encoding="UTF−8" ?>
<wsnt:Notify xmlns:wsnt=" h t t p : // docs . oasis−open . org /wsn/b−2"

xmlns:wsa=" h t t p : //www.w3. org /2005/08/ addressing "
targetnamespace=" h t t p : // docs . oasis−open . org /wsn/b−2">
<wsnt:NotificationMessage>

<wsnt:Topic Dialect=" h t t p : // docs . oasis−open . org /wsn/ t−1/TopicExpression /Concrete"
xmlns:internalns=" h t t p : // petals . ow2 . org /topicNamespace/sample/ Internal ">

internalns:rootTopic1 / childTopic2 /grandChildTopic21

"WS-Notification Broker" Service Engine 39



PEtALS Component User Guide

</ wsnt:Topic>
<wsnt:Message>

<NotifyMsgContent>
<Detai ls>

t h i s i s the d e t a i l description of the n o t i f i c a t i o n sent !
</ Detai ls>

</NotifyMsgContent>
</wsnt:Message>

</ wsnt:NotificationMessage>
</ wsnt:Notify>

"WS-Notification Broker" Service Engine 40



PEtALS Component User Guide

Bibliography

[1] D. Box, F. Curbera, et al. Web services addressing (WS-Addressing), 2004.

[2] D. Chappell and L. Liu. Web Services Brokered Notification 1.3 (WS-BrokeredNotification) OASIS Stan-
dard. Technical report, Tech. rep., OASIS, 2006.

[3] S. Graham, D. Hull, and B. Murray. Web Services Base Notification 1.3 (WS-BaseNotification) OASIS
Standard. Technical report, Tech. rep., OASIS, 2006.

[4] S. Graham, A. Karmarkar, J. Mischkinsky, I. Robinson, and I. Sedukhin. Web services resource 1.2 (WS-
Resource). OASIS Standard, April, 2006.

[5] S. Graham and J. Treadwell. Web Services Resource Properties 1.2 (WS-ResourceProperties) OASIS Stan-
dard. Technical report, Tech. rep., OASIS, 2006.

[6] L. Liu and S. Meder. Web Services Base Faults 1.2 (WS-BaseFaults). OASIS Committee Specification,
2006.

[7] L. Srinivasan and T. Banks. Web Services Resource Lifetime 1.2 (WS-ResourceLifetime) OASIS Standard.
Technical report, Tech. rep., OASIS, 2006.

[8] W. Vambenepe, S. Graham, and P. Niblett. Web Services Topics 1.3 (WS-Topics) OASIS Standard 2. Tech-
nical report, Tech. rep., OASIS, 2006.

"WS-Notification Broker" Service Engine 41


	Introduction
	The WS-Notification OASIS Standards
	PEtALS ESB and EDA paradigm
	Limitations And Extensions
	Limitations
	Extensions


	Architecture Overview
	UML Class Diagram
	The PEtALS WS-Notification libraries
	The PEtALS WS-Notification Broker Component
	CDK architecture part
	Classe Descriptions
	WS-Notification main mechanisms


	Configuration
	Generic configuration parameters of JBI component
	Specific WS-Notification Broker configuration
	Specific fields of jbi.xml file
	Additional configuration elements


	Installation
	PEtALS Entreprise Service Bus installation
	WS-Notification Broker service engine installation
	Others JBI components

	Ws-Notification Broker in action
	<<subcribe/unsubscribe>> use-case
	scenario
	actors concerned
	how to run the use case
	expected results

	<<registerPublisher/destroyRegistration>> use-case
	scenario
	actors concerned
	how to run the use case
	expected results

	<<Notify>> use-case
	scenario
	actors concerned
	how to run the use case
	expected results


	Externalize Ws-Notification Services
	Prerequisites and Restrictions
	description
	additional required petals components

	Installation
	Request WS-Notification service from outside
	List of reachable WS-Notification services and resources
	A Simple test : ``subscribe/unsubscribe'' from an external NotificationConsumer Actor
	And Next ?


	Component wsdl file
	WS-Notification Broker ``SupportedTopicsSet'' file
	WS-Notification actor request payloads xml files
	WsnConsumer <<subscribe>> request payload
	WsnProducer <<registerPublisher>> request payload
	WsnProducer <<notify>> request payload


